SavitzkyGolayFilter#
- class chemotools.smooth.SavitzkyGolayFilter(window_size: int = 3, polynomial_order: int = 1, mode: Literal['mirror', 'constant', 'nearest', 'wrap', 'interp'] = 'nearest')[source]
Bases:
TransformerMixin,OneToOneFeatureMixin,BaseEstimatorA transformer that calculates the Savitzky-Golay filter of the input data.
- Parameters:
window_size (int, optional, default=3) – The size of the window to use for the Savitzky-Golay filter. Must be odd. Default is 3.
polynomial_order (int, optional, default=1) – The order of the polynomial to use for the Savitzky-Golay filter. Must be less than window_size. Default is 1.
mode (str, optional, default="nearest") – The mode to use for the Savitzky-Golay filter. Can be “nearest”, “constant”, “reflect”, “wrap”, “mirror” or “interp”. Default is “nearest”.
- Variables:
n_features_in (int) – The number of features in the training data.
Examples
>>> from chemotools.datasets import load_fermentation_train >>> from chemotools.smooth import SavitzkyGolayFilter >>> # Load sample data >>> X, _ = load_fermentation_train() >>> # Initialize SavitzkyGolayFilter >>> sgf = SavitzkyGolayFilter() SavitzkyGolayFilter() >>> # Fit and transform the data >>> X_smoothed = sgf.fit_transform(X)
- fit(X: ndarray, y=None) SavitzkyGolayFilter[source]
Fit the transformer to the input data.
- Parameters:
X (np.ndarray of shape (n_samples, n_features)) – The input data to fit the transformer to.
y (None) – Ignored to align with API.
- Returns:
self – The fitted transformer.
- Return type:
SavitzkyGolayFilter
- transform(X: ndarray, y=None) ndarray[source]
Transform the input data by calculating the Savitzky-Golay filter.
- Parameters:
X (np.ndarray of shape (n_samples, n_features)) – The input data to transform.
y (None) – Ignored to align with API.
- Returns:
X_transformed – The transformed data.
- Return type:
np.ndarray of shape (n_samples, n_features)