SpectrumScale#
- class chemotools.augmentation.SpectrumScale(scale: float = 0.0, random_state: int | None = None)[source]
Bases:
TransformerMixin,OneToOneFeatureMixin,BaseEstimatorScales the data by a value drawn from the uniform distribution centered around 1.0.
- Parameters:
Examples
>>> from chemotools.augmentation import SpectrumScale >>> from chemotools.datasets import load_fermentation_train >>> # Load sample data >>> X, _ = load_fermentation_train() >>> # Instantiate the transformer >>> transformer = SpectrumScale(scale=0.1) SpectrumScale() >>> transformer.fit(X) >>> # Generate scaled data >>> X_scaled = transformer.transform(X)
- fit(X: ndarray, y=None) SpectrumScale[source]
Fit the transformer to the input data.
- Parameters:
X (np.ndarray of shape (n_samples, n_features)) – The input data to fit the transformer to.
y (None) – Ignored.
- Returns:
self – The fitted transformer.
- Return type:
SpectrumScale
- transform(X: ndarray, y=None) ndarray[source]
Transform the input data by scaling the spectrum.
- Parameters:
X (np.ndarray of shape (n_samples, n_features)) – The input data to transform.
y (None) – Ignored.
- Returns:
X_transformed – The transformed data.
- Return type:
np.ndarray of shape (n_samples, n_features)