BaselineShift#
- class chemotools.augmentation.BaselineShift(scale: float = 0.0, random_state: int | None = None)[source]
Bases:
TransformerMixin,OneToOneFeatureMixin,BaseEstimatorAdds a constant baseline to the data. The baseline is drawn from a one-sided uniform distribution between 0 and 0 + scale.
- Parameters:
- Variables:
n_features_in (int) – The number of features in the input data.
Examples
>>> from chemotools.augmentation import BaselineShift >>> from chemotools.datasets import load_fermentation_train >>> # Load sample data >>> X, _ = load_fermentation_train() >>> # Instantiate the transformer >>> transformer = BaselineShift(scale=0.1) BaselineShift() >>> transformer.fit(X) >>> # Generate baseline-shifted data >>> X_shifted = transformer.transform(X)
- fit(X: ndarray, y=None) BaselineShift[source]
Fit the transformer to the input data.
- Parameters:
X (np.ndarray of shape (n_samples, n_features)) – The input data to fit the transformer to.
y (None) – Ignored.
- Returns:
self – The fitted transformer.
- Return type:
BaselineShift
- transform(X: ndarray, y=None) ndarray[source]
Transform the input data by adding a baseline to the spectrum.
- Parameters:
X (np.ndarray of shape (n_samples, n_features)) – The input data to transform.
y (None) – Ignored.
- Returns:
X_transformed – The transformed data.
- Return type:
np.ndarray of shape (n_samples, n_features)