ConstantBaselineCorrection#
- class chemotools.baseline.ConstantBaselineCorrection(start: int = 0, end: int = 1, wavenumbers: ndarray | None = None)[source]
Bases:
TransformerMixin,OneToOneFeatureMixin,BaseEstimatorA transformer that corrects a baseline by subtracting a constant value. The constant value is taken by the mean of the features between the start and end indices. This is a common preprocessing technique for UV-Vis spectra.
- Parameters:
start (int, optional, default=0) – The index of the first feature to use for the baseline correction.
end (int, optional, default=1) – The index of the last feature to use for the baseline correction.
wavenumbers (np.ndarray, optional, default=None) – The wavenumbers corresponding to each feature in the input data.
- Variables:
Examples
>>> from chemotools.baseline import ConstantBaselineCorrection >>> from chemotools.datasets import load_fermentation_train >>> # Load sample data >>> X, _ = load_fermentation_train() >>> # Instantiate the transformer >>> transformer = ConstantBaselineCorrection(start=0, end=1) >>> transformer.fit(X) >>> # Generate baseline-corrected data >>> X_corrected = transformer.transform(X)
- fit(X: ndarray, y=None) ConstantBaselineCorrection[source]
Fit the transformer to the input data.
- Parameters:
X (np.ndarray of shape (n_samples, n_features)) – The input data to fit the transformer to.
y (None) – Ignored to align with API.
- Returns:
self – The fitted transformer.
- Return type:
ConstantBaselineCorrection
- transform(X: ndarray, y=None) ndarray[source]
Transform the input data by subtracting the constant baseline value.
- Parameters:
X (np.ndarray of shape (n_samples, n_features)) – The input data to transform.
y (None) – Ignored to align with API.
- Returns:
X_transformed – The transformed input data.
- Return type:
np.ndarray of shape (n_samples, n_features)