Source code for chemotools.baseline._constant_baseline_correction
"""
The :mod:`chemotools.baseline._constant_baseline_correction` module implements
a constant baseline correction transformer.
"""
# Author: Pau Cabaneros
# License: MIT
from typing import Optional
import numpy as np
from sklearn.base import BaseEstimator, TransformerMixin, OneToOneFeatureMixin
from sklearn.utils.validation import check_is_fitted, validate_data
[docs]
class ConstantBaselineCorrection(TransformerMixin, OneToOneFeatureMixin, BaseEstimator):
"""
A transformer that corrects a baseline by subtracting a constant value.
The constant value is taken by the mean of the features between the start
and end indices. This is a common preprocessing technique for UV-Vis spectra.
Parameters
----------
start : int, optional, default=0
The index of the first feature to use for the baseline correction.
end : int, optional, default=1
The index of the last feature to use for the baseline correction.
wavenumbers : np.ndarray, optional, default=None
The wavenumbers corresponding to each feature in the input data.
Attributes
----------
start_index_ : int
The index of the start of the range. It is 0 if the wavenumbers are not provided.
end_index_ : int
The index of the end of the range. It is 1 if the wavenumbers are not provided.
Examples
--------
>>> from chemotools.baseline import ConstantBaselineCorrection
>>> from chemotools.datasets import load_fermentation_train
>>> # Load sample data
>>> X, _ = load_fermentation_train()
>>> # Instantiate the transformer
>>> transformer = ConstantBaselineCorrection(start=0, end=1)
>>> transformer.fit(X)
>>> # Generate baseline-corrected data
>>> X_corrected = transformer.transform(X)
"""
def __init__(
self,
start: int = 0,
end: int = 1,
wavenumbers: Optional[np.ndarray] = None,
) -> None:
self.start = start
self.end = end
self.wavenumbers = wavenumbers
[docs]
def fit(self, X: np.ndarray, y=None) -> "ConstantBaselineCorrection":
"""
Fit the transformer to the input data.
Parameters
----------
X : np.ndarray of shape (n_samples, n_features)
The input data to fit the transformer to.
y : None
Ignored to align with API.
Returns
-------
self : ConstantBaselineCorrection
The fitted transformer.
"""
# Check that X is a 2D array and has only finite values
X = validate_data(
self, X, y="no_validation", ensure_2d=True, reset=True, dtype=np.float64
)
# Set the start and end indices
if self.wavenumbers is None:
self.start_index_ = self.start
self.end_index_ = self.end
else:
self.start_index_ = self._find_index(self.start)
self.end_index_ = self._find_index(self.end)
return self
def _find_index(self, target: float) -> int:
wavenumbers = np.array(self.wavenumbers)
return np.argmin(np.abs(wavenumbers - target)).astype(int)