Source code for chemotools.smooth._savitzky_golay_filter

"""
The :mod:`chemotools.smooth._savitzky_golay_filter` module implements the Savitzky-Golay Filter (SGF) transformation.
"""

# Authors: Pau Cabaneros
# License: MIT

from typing import Literal

import numpy as np
from scipy.signal import savgol_filter
from sklearn.base import BaseEstimator, TransformerMixin, OneToOneFeatureMixin
from sklearn.utils.validation import check_is_fitted, validate_data


[docs] class SavitzkyGolayFilter(TransformerMixin, OneToOneFeatureMixin, BaseEstimator): """ A transformer that calculates the Savitzky-Golay filter of the input data. Parameters ---------- window_size : int, optional, default=3 The size of the window to use for the Savitzky-Golay filter. Must be odd. Default is 3. polynomial_order : int, optional, default=1 The order of the polynomial to use for the Savitzky-Golay filter. Must be less than window_size. Default is 1. mode : str, optional, default="nearest" The mode to use for the Savitzky-Golay filter. Can be "nearest", "constant", "reflect", "wrap", "mirror" or "interp". Default is "nearest". Attributes ---------- n_features_in_ : int The number of features in the training data. Examples -------- >>> from chemotools.datasets import load_fermentation_train >>> from chemotools.smooth import SavitzkyGolayFilter >>> # Load sample data >>> X, _ = load_fermentation_train() >>> # Initialize SavitzkyGolayFilter >>> sgf = SavitzkyGolayFilter() SavitzkyGolayFilter() >>> # Fit and transform the data >>> X_smoothed = sgf.fit_transform(X) """ def __init__( self, window_size: int = 3, polynomial_order: int = 1, mode: Literal["mirror", "constant", "nearest", "wrap", "interp"] = "nearest", ) -> None: self.window_size = window_size self.polynomial_order = polynomial_order self.mode = mode
[docs] def fit(self, X: np.ndarray, y=None) -> "SavitzkyGolayFilter": """ Fit the transformer to the input data. Parameters ---------- X : np.ndarray of shape (n_samples, n_features) The input data to fit the transformer to. y : None Ignored to align with API. Returns ------- self : SavitzkyGolayFilter The fitted transformer. """ # Check that X is a 2D array and has only finite values X = validate_data( self, X, y="no_validation", ensure_2d=True, reset=True, dtype=np.float64 ) return self
[docs] def transform(self, X: np.ndarray, y=None) -> np.ndarray: """ Transform the input data by calculating the Savitzky-Golay filter. Parameters ---------- X : np.ndarray of shape (n_samples, n_features) The input data to transform. y : None Ignored to align with API. Returns ------- X_transformed : np.ndarray of shape (n_samples, n_features) The transformed data. """ # Check that the estimator is fitted check_is_fitted(self, "n_features_in_") # Check that X is a 2D array and has only finite values X_ = validate_data( self, X, y="no_validation", ensure_2d=True, copy=True, reset=False, dtype=np.float64, ) # Calculate the standard normal variate for i, x in enumerate(X_): X_[i] = self._calculate_smoothing(x) return X_.reshape(-1, 1) if X_.ndim == 1 else X_
def _calculate_smoothing(self, x) -> np.ndarray: return savgol_filter( x, self.window_size, self.polynomial_order, deriv=0, axis=0, mode=self.mode, )