Source code for chemotools.scatter._standard_normal_variate

"""
The :mod:`chemotools.scatter._standard_normal_variate` module implements the Standard Normal Variate (SNV) transformation.
"""

# Authors: Pau Cabaneros
# License: MIT

import warnings
import numpy as np
from sklearn.base import BaseEstimator, TransformerMixin, OneToOneFeatureMixin
from sklearn.utils.validation import check_is_fitted, validate_data


[docs] class StandardNormalVariate(TransformerMixin, OneToOneFeatureMixin, BaseEstimator): """ A transformer that calculates the standard normal variate of the input data. Attributes ---------- n_features_in_ : int The number of features in the training data. Raises ------ UserWarning If the standard deviation of a spectrum is zero (spectrum is flat), a warning is raised indicating that the result will contain NaNs. References ---------- [1] Åsmund Rinnan, Frans van den Berg, Søren Balling Engelsen, "Review of the most common pre-processing techniques for near-infrared spectra," TrAC Trends in Analytical Chemistry 28 (10) 1201-1222 (2009). Examples -------- >>> from chemotools.datasets import load_fermentation_train >>> from chemotools.scatter import StandardNormalVariate >>> # Load sample data >>> X, _ = load_fermentation_train() >>> # Initialize StandardNormalVariate >>> snv = StandardNormalVariate() StandardNormalVariate() >>> # Fit and transform the data >>> X_scaled = snv.fit_transform(X) """
[docs] def fit(self, X: np.ndarray, y=None) -> "StandardNormalVariate": """ Fit the transformer to the input data. Parameters ---------- X : np.ndarray of shape (n_samples, n_features) The input data to fit the transformer to. y : None Ignored to align with API. Returns ------- self : StandardNormalVariate The fitted transformer. """ # Check that X is a 2D array and has only finite values X = validate_data( self, X, y="no_validation", ensure_2d=True, reset=True, dtype=np.float64 ) return self
[docs] def transform(self, X: np.ndarray, y=None) -> np.ndarray: """ Transform the input data by calculating the standard normal variate. Parameters ---------- X : np.ndarray of shape (n_samples, n_features) The input data to transform. y : None Ignored to align with API. Returns ------- X_transformed : np.ndarray of shape (n_samples, n_features) The transformed data. """ # Check that the estimator is fitted check_is_fitted(self, "n_features_in_") # Check that X is a 2D array and has only finite values X_ = validate_data( self, X, y="no_validation", ensure_2d=True, copy=True, reset=False, dtype=np.float64, ) # Calculate the standard normal variate for i, x in enumerate(X_): X_[i] = self._calculate_standard_normal_variate(x) return X_.reshape(-1, 1) if X_.ndim == 1 else X_
def _calculate_standard_normal_variate(self, x) -> np.ndarray: std = x.std() if std == 0: warnings.warn( "Standard deviation is zero in SNV. This indicates a flat signal and will result in NaNs.", UserWarning, stacklevel=2, ) return (x - x.mean()) / std