Source code for chemotools.scatter._robust_normal_variate

"""
The :mod:`chemotools.scatter._robust_normal_variate` module implements the Robust Normal Variate (RNV) transformation.
"""

# Authors: Pau Cabaneros
# License: MIT

import warnings
import numpy as np
from sklearn.base import BaseEstimator, TransformerMixin, OneToOneFeatureMixin
from sklearn.utils.validation import check_is_fitted, validate_data
from sklearn.utils._param_validation import Interval, Real


[docs] class RobustNormalVariate(TransformerMixin, OneToOneFeatureMixin, BaseEstimator): """ A transformer that calculates the robust normal variate of the input data. Parameters ---------- percentile : float, optional, default=25 The percentile to use for the robust normal variate. The value should be between 0 and 100. The default is 25. epsilon : float, optional, default=1e-10 A small value added to the denominator to avoid numerical instability (division by zero). The default is 1e-10. Attributes ---------- n_features_in_ : int The number of features in the training data. Raises ------ UserWarning If the standard deviation of the values below the specified percentile is zero, a warning and a small epsilon is added to the denominator to avoid NaNs. References ---------- [1] Q. Guo, W. Wu, D.L. Massart. "The robust normal variate transform for pattern recognition with near-infrared data." doi:10.1016/S0003-2670(98)00737-5 Examples -------- >>> from chemotools.datasets import load_fermentation_train >>> from chemotools.scatter import RobustNormalVariate >>> # Load sample data >>> X, _ = load_fermentation_train() >>> # Initialize RobustNormalVariate >>> rnv = RobustNormalVariate() RobustNormalVariate() >>> # Fit and transform the data >>> X_scaled = rnv.fit_transform(X) """ _parameter_constraints: dict = { "percentile": [Interval(Real, 0, None, closed="both")], "epsilon": [Interval(Real, 0, None, closed="both")], } def __init__(self, percentile: float = 25, epsilon: float = 1e-10): self.percentile = percentile self.epsilon = epsilon
[docs] def fit(self, X: np.ndarray, y=None) -> "RobustNormalVariate": """ Fit the transformer to the input data. Parameters ---------- X : np.ndarray of shape (n_samples, n_features) The input data to fit the transformer to. y : None Ignored to align with API. Returns ------- self : RobustNormalVariate The fitted transformer. """ # Check that X is a 2D array and has only finite values X = validate_data( self, X, y="no_validation", ensure_2d=True, reset=True, dtype=np.float64 ) return self
[docs] def transform(self, X: np.ndarray, y=None) -> np.ndarray: """ Transform the input data by calculating the standard normal variate. Parameters ---------- X : np.ndarray of shape (n_samples, n_features) The input data to transform. y : None Ignored to align with API. Returns ------- X_transformed : np.ndarray of shape (n_samples, n_features) The transformed data. """ # Check that the estimator is fitted check_is_fitted(self, "n_features_in_") # Check that X is a 2D array and has only finite values X_ = validate_data( self, X, y="no_validation", ensure_2d=True, copy=True, reset=False, dtype=np.float64, ) # Calculate the standard normal variate for i, x in enumerate(X_): X_[i] = self._calculate_robust_normal_variate(x) return X_.reshape(-1, 1) if X_.ndim == 1 else X_
def _calculate_robust_normal_variate(self, x) -> np.ndarray: percentile = np.percentile(x, self.percentile) denom = np.std(x[x <= percentile]) if denom == 0: warnings.warn( "Denominator is zero in RNV. Adding epsilon to avoid NaNs.", UserWarning, stacklevel=2, ) return (x - percentile) / (denom + self.epsilon)