Source code for chemotools.scale._point_scaler

"""
The :mod:`chemotools.scale._point_scaler` module implements a Point Scaler transformer.
"""

# Authors: Pau Cabaneros
# License: MIT

from typing import Optional

import numpy as np
from sklearn.base import BaseEstimator, TransformerMixin, OneToOneFeatureMixin
from sklearn.utils.validation import check_is_fitted, validate_data


[docs] class PointScaler(TransformerMixin, OneToOneFeatureMixin, BaseEstimator): """ A transformer that scales the input data by the intensity value at a given point. The point can be specified by an index or by a wavenumber. Parameters ---------- point : int, optional, default=0 The point to scale the data by. It can be an index or a wavenumber. wavenumber : array-like, optional, default=None The wavenumbers of the input data. If not provided, the indices will be used instead. Default is None. If provided, the wavenumbers must be provided in ascending order. Attributes ---------- n_features_in_ : int The number of features in the input data. point_index_ : int The index of the point to scale the data by. It is 0 if the wavenumbers are not provided. Examples -------- >>> from chemotools.datasets import load_fermentation_train >>> from chemotools.scale import PointScaler >>> # Load sample data >>> X, _ = load_fermentation_train() >>> # Initialize PointScaler with point index >>> scaler = PointScaler(point=10) PointScaler(point=10, wavenumbers=None) >>> # Fit and transform the data >>> X_scaled = scaler.fit_transform(X) """ def __init__(self, point: int = 0, wavenumbers: Optional[np.ndarray] = None): self.point = point self.wavenumbers = wavenumbers
[docs] def fit(self, X: np.ndarray, y=None) -> "PointScaler": """ Fit the transformer to the input data. Parameters ---------- X : np.ndarray of shape (n_samples, n_features) The input data to fit the transformer to. y : None Ignored to align with API. Returns ------- self : PointScaler The fitted transformer. """ # Check that X is a 2D array and has only finite values X = validate_data( self, X, y="no_validation", ensure_2d=True, reset=True, dtype=np.float64 ) # Set the point index if self.wavenumbers is None: self.point_index_ = self.point else: self.point_index_ = self._find_index(self.point) return self
[docs] def transform(self, X: np.ndarray, y=None) -> np.ndarray: """ Transform the input data by scaling by the value at a given Point. Parameters ---------- X : np.ndarray of shape (n_samples, n_features) The input data to transform. y : None Ignored to align with API. Returns ------- X_transformed : np.ndarray of shape (n_samples, n_features) The transformed data. """ # Check that the estimator is fitted check_is_fitted(self, "point_index_") # Check that X is a 2D array and has only finite values X_ = validate_data( self, X, y="no_validation", ensure_2d=True, copy=True, reset=False, dtype=np.float64, ) # Scale the data by Point for i, x in enumerate(X_): X_[i] = x / x[self.point_index_] return X_.reshape(-1, 1) if X_.ndim == 1 else X_
def _find_index(self, target: float) -> int: wavenumbers = np.array(self.wavenumbers) return int(np.argmin(np.abs(wavenumbers - target)))