Source code for chemotools.scale._norm_scaler

"""
The :mod:`chemotools.scale._norm_scaler` module implements a L-norm Scaler transformer.
"""

# Authors: Pau Cabaneros
# License: MIT

import numpy as np
from sklearn.base import BaseEstimator, TransformerMixin, OneToOneFeatureMixin
from sklearn.utils.validation import check_is_fitted, validate_data


[docs] class NormScaler(TransformerMixin, OneToOneFeatureMixin, BaseEstimator): """ A transformer that scales the input data by the L-norm of the spectrum. Parameters ---------- l_norm : int, optional, default=2 The L-norm to use. Default is 2. Attributes ---------- n_features_in_ : int The number of features in the input data. Examples -------- >>> from chemotools.datasets import load_fermentation_train >>> from chemotools.scale import NormScaler >>> # Load sample data >>> X, _ = load_fermentation_train() >>> # Initialize NormScaler >>> scaler = NormScaler(l_norm=2) NormScaler() >>> # Fit and transform the data >>> X_scaled = scaler.fit_transform(X) """ def __init__(self, l_norm: int = 2): self.l_norm = l_norm
[docs] def fit(self, X: np.ndarray, y=None) -> "NormScaler": """ Fit the transformer to the input data. Parameters ---------- X : np.ndarray of shape (n_samples, n_features) The input data to fit the transformer to. y : None Ignored to align with API. Returns ------- self : NormScaler The fitted transformer. """ # Check that X is a 2D array and has only finite values X = validate_data( self, X, y="no_validation", ensure_2d=True, reset=True, dtype=np.float64 ) return self
[docs] def transform(self, X: np.ndarray, y=None) -> np.ndarray: """ Transform the input data by scaling by the L-norm. Parameters ---------- X : np.ndarray of shape (n_samples, n_features) The input data to transform. y : None Ignored to align with API. Returns ------- X_transformed : np.ndarray of shape (n_samples, n_features) The transformed data. """ # Check that the estimator is fitted check_is_fitted(self, "n_features_in_") # Check that X is a 2D array and has only finite values X_ = validate_data( self, X, y="no_validation", ensure_2d=True, copy=True, reset=False, dtype=np.float64, ) # Normalize the data by the maximum value for i, x in enumerate(X_): X_[i] = x / np.linalg.norm(x, ord=self.l_norm) return X_.reshape(-1, 1) if X_.ndim == 1 else X_