Source code for chemotools.scale._min_max_scaler

"""
The :mod:`chemotools.scale._min_max_scaler` module implements a Min-Max Scaler transformer.
"""

# Authors: Pau Cabaneros
# License: MIT

import numpy as np
from sklearn.base import BaseEstimator, TransformerMixin, OneToOneFeatureMixin
from sklearn.utils.validation import check_is_fitted, validate_data


[docs] class MinMaxScaler(TransformerMixin, OneToOneFeatureMixin, BaseEstimator): """ A transformer that scales the input data by subtracting the minimum and dividing by the difference between the maximum and the minimum. When the use_min parameter is False, the data is scaled by the maximum. Parameters ---------- use_min : bool, default=True The normalization to use. If True, the data is subtracted by the minimum and scaled by the maximum. If False, the data is scaled by the maximum. Attributes ---------- n_features_in_ : int The number of features in the input data. Examples -------- >>> from chemotools.datasets import load_fermentation_train >>> from chemotools.scale import MinMaxScaler >>> # Load sample data >>> X, _ = load_fermentation_train() >>> # Initialize MinMaxScaler >>> scaler = MinMaxScaler() MinMaxScaler() >>> # Fit and transform the data >>> X_scaled = scaler.fit_transform(X) """ def __init__(self, use_min: bool = True): self.use_min = use_min
[docs] def fit(self, X: np.ndarray, y=None) -> "MinMaxScaler": """ Fit the transformer to the input data. Parameters ---------- X : np.ndarray of shape (n_samples, n_features) The input data to fit the transformer to. y : None Ignored to align with API. Returns ------- self : MinMaxScaler The fitted transformer. """ # Check that X is a 2D array and has only finite values X = validate_data( self, X, y="no_validation", ensure_2d=True, reset=True, dtype=np.float64 ) return self
[docs] def transform(self, X: np.ndarray, y=None) -> np.ndarray: """ Transform the input data by scaling it. Parameters ---------- X : np.ndarray of shape (n_samples, n_features) The input data to transform. y : None Ignored to align with API. Returns ------- X_transformed : np.ndarray of shape (n_samples, n_features) The transformed data. """ # Check that the estimator is fitted check_is_fitted(self, "n_features_in_") # Check that X is a 2D array and has only finite values X_ = validate_data( self, X, y="no_validation", ensure_2d=True, copy=True, reset=False, dtype=np.float64, ) # Normalize the data by the maximum value if self.use_min: X_ = (X_ - np.min(X_, axis=1, keepdims=True)) / ( np.max(X_, axis=1, keepdims=True) - np.min(X_, axis=1, keepdims=True) ) else: X_ = X_ / np.max(X_, axis=1, keepdims=True) return X_.reshape(-1, 1) if X_.ndim == 1 else X_