Source code for chemotools.baseline._subtract_reference

"""
The :mod:`chemotools.baseline._subtract_reference` module implements
a reference spectrum subtraction transformer.
"""

# Author: Pau Cabaneros
# License: MIT

from typing import Optional

import numpy as np
from sklearn.base import BaseEstimator, TransformerMixin, OneToOneFeatureMixin
from sklearn.utils.validation import check_is_fitted, validate_data


[docs] class SubtractReference(TransformerMixin, OneToOneFeatureMixin, BaseEstimator): """ A transformer that subtracts a reference spectrum from the input data. Parameters ---------- reference : np.ndarray, optional, default=None The reference spectrum to subtract from the input data. If None, the original spectrum is returned. Attributes ---------- n_features_in_ : int The number of features in the input data. reference_ : np.ndarray The reference spectrum to subtract from the input data if the reference parameter is not None. Examples -------- >>> from chemotools.baseline import SubtractReference >>> from chemotools.datasets import load_fermentation_train >>> # Load sample data >>> X, _ = load_fermentation_train() >>> # Convert X to a numpy array >>> X = np.array(X) >>> # Instantiate the transformer with a reference spectrum >>> reference = X[0] >>> transformer = SubtractReference(reference=reference) SubtractReference() >>> transformer.fit(X) >>> # Generate baseline-corrected data >>> X_corrected = transformer.transform(X) """ def __init__( self, reference: Optional[np.ndarray] = None, ): self.reference = reference
[docs] def fit(self, X: np.ndarray, y=None) -> "SubtractReference": """ Fit the transformer to the input data. Parameters ---------- X : np.ndarray of shape (n_samples, n_features) The input data to fit the transformer to. y : None Ignored to align with API. Returns ------- self : SubtractReference The fitted transformer. """ # Check that X is a 2D array and has only finite values X = validate_data( self, X, y="no_validation", ensure_2d=True, reset=True, dtype=np.float64 ) # Set the reference if self.reference is not None: self.reference_ = self.reference.copy() return self return self
[docs] def transform(self, X: np.ndarray, y=None) -> np.ndarray: """ Transform the input data by subtracting the reference spectrum. Parameters ---------- X : np.ndarray of shape (n_samples, n_features) The input data to transform. y : None Ignored to align with API. Returns ------- X_transformed : np.ndarray of shape (n_samples, n_features) The transformed data. """ # Check that the estimator is fitted check_is_fitted(self, "n_features_in_") # Check that X is a 2D array and has only finite values X_ = validate_data( self, X, y="no_validation", ensure_2d=True, copy=True, reset=False, dtype=np.float64, ) if self.reference is None: return X_.reshape(-1, 1) if X_.ndim == 1 else X_ # Subtract the reference for i, x in enumerate(X_): X_[i] = self._subtract_reference(x) return X_.reshape(-1, 1) if X_.ndim == 1 else X_
def _subtract_reference(self, x) -> np.ndarray: """ Subtract the reference spectrum from a single spectrum. Parameters ---------- x : np.ndarray The spectrum to subtract the reference from. """ return x - self.reference_