Source code for chemotools.baseline._linear_correction

"""
The :mod:`chemotools.baseline._linear_correction` module implements
a linear baseline correction transformer.
"""

# Author: Pau Cabaneros
# License: MIT

import numpy as np
from sklearn.base import BaseEstimator, TransformerMixin, OneToOneFeatureMixin
from sklearn.utils.validation import check_is_fitted, validate_data


[docs] class LinearCorrection(TransformerMixin, OneToOneFeatureMixin, BaseEstimator): """ A transformer that corrects a baseline by subtracting a linear baseline through the initial and final points of the spectrum. Attributes ---------- n_features_in_ : int The number of features in the input data. Examples -------- >>> from chemotools.baseline import LinearCorrection >>> from chemotools.datasets import load_fermentation_train >>> # Load sample data >>> X, _ = load_fermentation_train() >>> # Instantiate the transformer >>> transformer = LinearCorrection() LinearCorrection() >>> transformer.fit(X) >>> # Generate baseline-corrected data >>> X_corrected = transformer.transform(X) """
[docs] def fit(self, X: np.ndarray, y=None) -> "LinearCorrection": """ Fit the transformer to the input data. Parameters ---------- X : np.ndarray of shape (n_samples, n_features) The input data to fit the transformer to. y : None Ignored to align with API. Returns ------- self : LinearCorrection The fitted transformer. """ # Check that X is a 2D array and has only finite values X = validate_data( self, X, y="no_validation", ensure_2d=True, reset=True, dtype=np.float64 ) return self
[docs] def transform(self, X: np.ndarray, y=None) -> np.ndarray: """ Transform the input data by subtracting the constant baseline value. Parameters ---------- X : np.ndarray of shape (n_samples, n_features) The input data to transform. y : None Ignored to align with API. Returns ------- X_transformed : np.ndarray of shape (n_samples, n_features) The transformed data. """ # Check that the estimator is fitted check_is_fitted(self, "n_features_in_") # Check that X is a 2D array and has only finite values X_ = validate_data( self, X, y="no_validation", ensure_2d=True, copy=True, reset=False, dtype=np.float64, ) # Calculate non-negative values for i, x in enumerate(X_): X_[i, :] = self._drift_correct_spectrum(x) return X_.reshape(-1, 1) if X_.ndim == 1 else X_
def _drift_correct_spectrum(self, x: np.ndarray) -> np.ndarray: # Can take any array and returns with a linear baseline correction # Find the x values at the edges of the spectrum y1: float = x[0] y2: float = x[-1] # Find the max and min wavenumebrs x1 = 0 x2 = len(x) x_range = np.linspace(x1, x2, x2) # Calculate the straight line initial and end point slope = (y2 - y1) / (x2 - x1) intercept = y1 - slope * x1 drift_correction = slope * x_range + intercept # Return the drift corrected spectrum return x - drift_correction