Source code for chemotools.augmentation._gaussian_broadening

"""
The :mod:`chemotools.augmentation._gaussian_broadening` module implements the GaussianBroadening
transformer to broaden peaks in spectral data using Gaussian convolution.
"""

# Authors: Pau Cabaneros
# License: MIT

from typing import Literal, Optional

import numpy as np
from scipy.ndimage import gaussian_filter1d
from sklearn.base import BaseEstimator, TransformerMixin, OneToOneFeatureMixin
from sklearn.utils import check_random_state
from sklearn.utils.validation import check_is_fitted, validate_data
from sklearn.utils._param_validation import Interval, Real, StrOptions


[docs] class GaussianBroadening(TransformerMixin, OneToOneFeatureMixin, BaseEstimator): """ Transform spectral data by broadening peaks using Gaussian convolution. This transformer applies Gaussian smoothing to broaden peaks in spectral data. For each signal, a random sigma is chosen between 0 and the specified sigma value. Parameters ---------- sigma : float, default=1.0 Maximum standard deviation for the Gaussian kernel. The actual sigma used will be randomly chosen between 0 and this value. mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, default='reflect' The mode parameter determines how the input array is extended when the filter overlaps a border. Default is 'reflect'. pad_value : float, default=0.0 Value to fill past edges of input if mode is 'constant'. random_state : int, optional, default=None Random state for reproducible sigma selection. truncate : float, default=4.0 Truncate the filter at this many standard deviations. Larger values increase computation time but improve accuracy. Examples -------- >>> from chemotools.augmentation import GaussianBroadening >>> from chemotools.datasets import load_fermentation_train >>> # Load sample data >>> X, _ = load_fermentation_train() >>> # Instantiate the transformer >>> transformer = GaussianBroadening(sigma=2.0, mode="reflect") GaussianBroadening() >>> transformer.fit(X) >>> # Generate broadened data >>> X_broadened = transformer.transform(X) """ _parameter_constraints: dict = { "sigma": [Interval(Real, 0, None, closed="both")], "mode": StrOptions({"reflect", "constant", "nearest", "mirror", "wrap"}), "pad_value": [Real], "random_state": [None, int, np.random.RandomState], "truncate": [Interval(Real, 0, None, closed="both")], } def __init__( self, sigma: float = 1.0, mode: Literal["reflect", "constant", "nearest", "mirror", "wrap"] = "reflect", pad_value: float = 0.0, random_state: Optional[int] = None, truncate: float = 4.0, ): self.sigma = sigma self.mode = mode self.pad_value = pad_value self.random_state = random_state self.truncate = truncate
[docs] def fit(self, X: np.ndarray, y=None) -> "GaussianBroadening": """ Fit the transformer to the data (in this case, only validates input). Parameters ---------- X : np.ndarray of shape (n_samples, n_features) Input data to validate. y : None Ignored. Returns ------- self : GaussianBroadening The fitted transformer. """ X = validate_data( self, X, y="no_validation", ensure_2d=True, reset=True, dtype=np.float64 ) # Validate sigma parameter if not isinstance(self.sigma, (int, float)): raise ValueError("sigma must be a number") if self.sigma < 0: raise ValueError("sigma must be non-negative") # Initialize random number generator self._rng = check_random_state(self.random_state) return self
[docs] def transform(self, X: np.ndarray, y=None) -> np.ndarray: """ Apply Gaussian broadening to the input data. Parameters ---------- X : np.ndarray of shape (n_samples, n_features) The data to transform. y : None Ignored. Returns ------- X_transformed : np.ndarray of shape (n_samples, n_features) The transformed data with broadened peaks. """ check_is_fitted(self, "n_features_in_") X_ = validate_data( self, X, y="no_validation", ensure_2d=True, copy=True, reset=False, dtype=np.float64, ) # Transform each sample for i, x in enumerate(X_): X_[i] = self._broaden_signal(x) return X_
def _broaden_signal(self, x: np.ndarray) -> np.ndarray: """ Apply Gaussian broadening to a single signal. Parameters ---------- x : ndarray of shape (n_features,) The input signal to broaden. Returns ------- broadened_signal : ndarray of shape (n_features,) The broadened signal. """ # Randomly choose sigma between 0 and max sigma sigma = self._rng.uniform(0, self.sigma) # Apply Gaussian filter return gaussian_filter1d( x, sigma=sigma, mode=self.mode, cval=self.pad_value, truncate=self.truncate )