"""
The :mod:`chemotools.augmentation._add_noise` module implements the AddNoise
transformer to add random noise from various probability distributions to input data.
"""
# Authors: Pau Cabaneros
# License: MIT
from typing import Literal, Optional
import numpy as np
from sklearn.base import BaseEstimator, TransformerMixin, OneToOneFeatureMixin
from sklearn.utils import check_random_state
from sklearn.utils.validation import check_is_fitted, validate_data
from sklearn.utils._param_validation import Interval, Real, StrOptions
[docs]
class AddNoise(TransformerMixin, OneToOneFeatureMixin, BaseEstimator):
"""Add noise to input data from various probability distributions.
This transformer adds random noise from specified probability distributions
to the input data. Supported distributions include Gaussian, Poisson, and
exponential.
Parameters
----------
distribution : {'gaussian', 'poisson', 'exponential'}, default='gaussian'
The probability distribution to sample noise from.
scale : float, default=0.0
Scale parameter for the noise distribution:
- For gaussian: standard deviation
- For poisson: multiplication factor for sampled values
- For exponential: scale parameter (1/λ)
Must be non-negative.
random_state : int, optional
Random seed for reproducibility.
Attributes
----------
n_features_in_ : int
Number of features in the training data.
Examples
--------
>>> from chemotools.augmentation import AddNoise
>>> from chemotools.datasets import load_fermentation_train
>>> # Load sample data
>>> X, _ = load_fermentation_train()
>>> # Instantiate the transformer
>>> transformer = AddNoise(distribution="gaussian", scale=0.1)
AddNoise()
>>> transformer.fit(X)
>>> # Generate noisy data
>>> X_noisy = transformer.transform(X)
"""
_parameter_constraints: dict = {
"distribution": StrOptions({"gaussian", "poisson", "exponential"}),
"scale": [Interval(Real, 0, None, closed="both")],
"random_state": [None, int, np.random.RandomState],
}
def __init__(
self,
distribution: Literal["gaussian", "poisson", "exponential"] = "gaussian",
scale: float = 0.0,
random_state: Optional[int] = None,
):
self.distribution = distribution
self.scale = scale
self.random_state = random_state
[docs]
def fit(self, X: np.ndarray, y=None) -> "AddNoise":
"""Fit the transformer to the input data.
Parameters
----------
X : np.ndarray of shape (n_samples, n_features)
Training data.
y : None
Ignored. Present for API consistency.
Returns
-------
self : AddNoise
Fitted transformer.
Raises
------
ValueError
If X is not a 2D array or contains non-finite values.
"""
# Check that X is a 2D array and has only finite values
X = validate_data(
self, X, y="no_validation", ensure_2d=True, reset=True, dtype=np.float64
)
# Instantiate the random number generator
self._rng = check_random_state(self.random_state)
return self
def _add_gaussian_noise(self, X: np.ndarray) -> np.ndarray:
"""Add Gaussian noise to the input array."""
return X + self._rng.normal(0, self.scale, size=X.shape)
def _add_poisson_noise(self, X: np.ndarray) -> np.ndarray:
"""Add Poisson noise to the input array."""
return X + self._rng.poisson(X, size=X.shape) * self.scale
def _add_exponential_noise(self, X: np.ndarray) -> np.ndarray:
"""Add exponential noise to the input array."""
return X + self._rng.exponential(self.scale, size=X.shape)